
Operating Systems
Lecture 12

Readers/Writers and Deadlock

Prof. Mengwei Xu

11/18/24 Mengwei Xu @ BUPT 2

• Readers/Writers Lock
• Deadlock

Goals for Today

11/18/24 Mengwei Xu @ BUPT 3

• Readers/Writers Lock
• Deadlock

Goals for Today

11/18/24 Mengwei Xu @ BUPT 4

• Motivation: Consider a shared database
- Two classes of users:

qReaders – never modify database
qWriters – read and modify database

- Is using a single lock on the whole database sufficient?
qLike to have many readers at the same time
qOnly one writer at a time

Readers/Writers Problem

R
R

R

W

11/18/24 Mengwei Xu @ BUPT 5

• Correctness Constraints:
- Readers can access database when no writers
- Writers can access database when no readers or writers
- Only one thread manipulates state variables at a time

• Basic structure of a solution:
- Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

- Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

- State variables (Protected by a lock called “lock”):
qint AR: Number of active readers; initially = 0
qint WR: Number of waiting readers; initially = 0
qint AW: Number of active writers; initially = 0
qint WW: Number of waiting writers; initially = 0
qCondition okToRead = NIL
qCondition okToWrite = NIL

Basic Readers/Writers Solution

11/18/24 Mengwei Xu @ BUPT 6

Code for a Reader
Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}

Why release lock
here?

11/18/24 Mengwei Xu @ BUPT 7

Code for a Writer
Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock); // Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Why broadcast()
here instead of
signal()?

Why Give priority to
writers?

11/18/24 Mengwei Xu @ BUPT 8

• Use an example to simulate the solution

• Consider the following sequence of operators:
- R1, R2, W1, R3

• Initially: AR = 0, WR = 0, AW = 0, WW = 0

Simulation of Readers/Writers Solution

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 comes along
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 comes along
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 comes along
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 comes along
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 comes along
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 comes along
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 comes along
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 comes along
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 comes along
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 comes along
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
} Assume readers take a while to access database

Situation: Locks released, only AR is non-zero

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
} W1 cannot start because of readers, so goes to sleep

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Status:
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1, R3 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1, R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1, R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1, R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

All reader finished, signal writer – note, R3 still waiting

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Got signal
from R1

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Writer() {
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++;
 lock.release();

 AccessDbase(ReadWrite);

 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

No waiting writer, signal reader R3

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Got signal
from W1

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Mengwei Xu @ BUPT Fall 2022

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 AccessDbase(ReadOnly);

 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

DONE!

Mengwei Xu @ BUPT Fall 2022

Read/Writer Questions
Reader() {
 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.Release();
}

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

What if we
remove this
line?

Mengwei Xu @ BUPT Fall 2022

Read/Writer Questions
Reader() {
 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.broadcast();
 lock.Release();
}

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.Release();
}

What if we turn
signal to
broadcast?

Mengwei Xu @ BUPT Fall 2022

Read/Writer Questions
Reader() {
 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}

What if we turn okToWrite and okToRead into okContinue?

Mengwei Xu @ BUPT Fall 2022

Read/Writer Questions
Reader() {
 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.signal();
 lock.Release();
}

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}

• R1 arrives
• W1, R2 arrive while R1 still reading à W1 and R2 wait for R1 to finish
• Assume R1’s signal is delivered to R2 (not W1)

Mengwei Xu @ BUPT Fall 2022

Read/Writer Questions
Reader() {
 // check into system
 lock.Acquire();

 while ((AW + WW) > 0) {
 WR++;
 okContinue.wait(&lock);
 WR--;
 }

 AR++;
 lock.release();

 // read-only access
 AccessDbase(ReadOnly);

 // check out of system
 lock.Acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okContinue.broadcast();
 lock.Release();
}

Writer() {
 // check into system
 lock.Acquire();

 while ((AW + AR) > 0) {
 WW++;
 okContinue.wait(&lock);
 WW--;
 }

 AW++;
 lock.release();

 // read/write access
 AccessDbase(ReadWrite);

 // check out of system
 lock.Acquire();
 AW--;
 if (WW > 0){
 okContinue.signal();
 } else if (WR > 0) {
 okContinue.broadcast();
 }
 lock.Release();
}

Need to change to broadcast!

11/18/24 Mengwei Xu @ BUPT 52

• Let’s wrap the code into a RWLock class

RWLock* rwlock;

rwlock->startRead();
// Read shared data
rwlock->doneRead();

rwlock->startWrite();
// Write shared data
rwlock->startRead();

Implementing RWLock

11/18/24 Mengwei Xu @ BUPT 53

class RWLock {
Lock lock;
CV canRead;
CV canWrite;
int AR, AW, WR, WW;

}

Implementing RWLock

void RWLock::startRead() {
lock.acquire();
WR ++;
while ((AW + WW > 0)) {
canRead.Wait(&lock);

}
WR --;
AR ++;
lock.release();

}

void RWLock::doneRead() {
lock.acquire();
AR --;
if ((AR == 0) && (WW > 0)) {
canWrite.signal();

}
lock.release();

}

11/18/24 Mengwei Xu @ BUPT 54

class RWLock {
Lock lock;
CV canRead;
CV canWrite;
int AR, AW, WR, WW;

}

Implementing RWLock

void RWLock::startWrite() {
lock.acquire();
WW ++;
while ((AW + AR > 0)) {
canWrite.Wait(&lock);

}
WW --;
AW ++;
lock.release();

}

void RWLock::doneWrite() {
lock.acquire();
AW --;
assert(AW == 0);
if (WW > 0) {
canWrite.signal();

}
else {
canRead.broadcast();

}
lock.release();

}

11/18/24 Mengwei Xu @ BUPT 55

• Readers/Writers Lock
• Deadlock

Goals for Today

11/18/24 Mengwei Xu @ BUPT 56

• Deadlock (死锁): a cycle of waiting among a set of threads, where each
thread waits for some other thread in the cycle to take some action.

• A simple case: mutually recursive locking

Deadlock

// Thread A

lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

// Thread B

lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();

11/18/24 Mengwei Xu @ BUPT 57

• Deadlock (死锁): a cycle of waiting among a set of threads, where each
thread waits for some other thread in the cycle to take some action.

• Another example with 2 locks and 1 condition variable

Deadlock

// Thread A

lock1.acquire();
lock2.acquire();
while (need to wait) {
cv.wait(&lock2);

}
lock2.release();
lock1.release();

// Thread B

lock1.acquire();
lock2.acquire();
cv.signal();
lock2.release();
lock1.release();

11/18/24 Mengwei Xu @ BUPT 58

• Deadlock (死锁): a cycle of waiting among a set of threads, where each
thread waits for some other thread in the cycle to take some action.

• Another example with 2 locks and 1 condition variable

Deadlock

// Thread A

lock1.acquire();
lock2.acquire();
while (need to wait) {
cv.wait(&lock2);

}
lock2.release();
lock1.release();

// Thread B

lock1.acquire();
lock2.acquire();
cv.signal();
lock2.release();
lock1.release();

Any deadlock?

11/18/24 Mengwei Xu @ BUPT 59

• Starvation vs. Deadlock
- Starvation: thread waits indefinitely

q Example, low-priority thread waiting for resources constantly in use by high-priority threads

- Deadlock: circular waiting for resources
qThread A owns Res 1 and is waiting for Res 2

Thread B owns Res 2 and is waiting for Res 1

- Deadlock Þ Starvation but not vice versa
q Starvation can end (but doesn’t have to)
q Deadlock can’t end without external intervention

Starvation vs Deadlock

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

11/18/24 Mengwei Xu @ BUPT 60

• Each segment of road can be viewed as a resource
- Car must own the segment under them
- Must acquire segment that they are moving into

• For bridge: must acquire both halves
- Traffic only in one direction at a time
- Problem occurs when two cars in opposite directions on bridge: each acquires

one segment and needs next
• If a deadlock occurs, it can be resolved if one car backs up (preempt

resources and rollback)
- Several cars may have to be backed up

• Starvation is possible
- East-going traffic really fast Þ no one goes west

Bridge Crossing Example

11/18/24 Mengwei Xu @ BUPT 61

• Dining Philosophers Problem (哲学家进餐问题)
- For example: 5 philosophers, 5 plate, and 5 chopsticks
- When a philosopher thinking, he holds nothing
- When a philosopher wants to eat, he first picks up the

left chopstick, and then the right chopstick.After eating,
he puts down both chopsticks.

- Stuck when everyone holds the left chopstick
- A general case of mutually recursive locking

Dining Philosophers Problem

11/18/24 Mengwei Xu @ BUPT 62

• Deadlock not always deterministic – Example 2 mutexes:
 Thread A Thread B
 x.P(); y.P();
 y.P(); x.P();
 y.V(); x.V();
 x.V(); y.V();

- Deadlock won’t always happen with this code
q Have to have exactly the right timing (“wrong” timing?)
q So you release a piece of software, and you tested it, and there it is, controlling a nuclear power

plant…
• Deadlocks occur with multiple resources

- Means you can’t decompose the problem
- Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
- Each thread needs 2 disk drives to function
- Each thread gets one disk and waits for another one

Conditions for Deadlock

11/18/24 Mengwei Xu @ BUPT 63

• Mutual exclusion
- Only one thread at a time can use a resource.
- Each chopstick can be held by a single philosopher at a time

• Hold and wait
- Thread holding at least one resource is waiting to acquire additional resources held by

other threads
- When a philosopher needs to wait for a chopstick, he continues to hold onto any

chopsticks he has already picked up
• No preemption

- Resources are released only voluntarily by the thread holding the resource, after thread
is finished with it

- Once a philosopher picks up a chopstick, he does not release it until he is done eating.
• Circular wait

- There exists a set {T1, …, Tn} of waiting threads
q Ti is waiting for a resource that is held by Ti+1

- Everyone is holding the left chopstick but waiting for the right one.

Four requirements for Deadlock

11/18/24 Mengwei Xu @ BUPT 64

• Mutual exclusion
- Only one thread at a time can use a resource.
- Each chopstick can be held by a single philosopher at a time

• Hold and wait
- Thread holding at least one resource is waiting to acquire additional resources held by

other threads
- When a philosopher needs to wait for a chopstick, he continues to hold onto any

chopsticks he has already picked up
• No preemption

- Resources are released only voluntarily by the thread holding the resource, after thread
is finished with it

- Once a philosopher picks up a chopstick, he does not release it until he is done eating.
• Circular wait

- There exists a set {T1, …, Tn} of waiting threads
q Ti is waiting for a resource that is held by Ti+1

- Everyone is holding the left chopstick but waiting for the right one.

Four requirements for Deadlock

11/18/24 Mengwei Xu @ BUPT 65

• Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm
- Some technique for forcibly preempting resources and/or terminating tasks

• Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks never occur in the
system
- Used by most operating systems, including UNIX

Methods for Handling Deadlocks

11/18/24 Mengwei Xu @ BUPT 66

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 67

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 68

• Just make sure all locks acquired in the
same order!
- Total ordering
- Partial ordering
- An excellent example: memory mapping

code in Linux

Removing Circular Wait

https://github.com/torvalds/linux/blob/master/mm/filemap.c

11/18/24 Mengwei Xu @ BUPT 69

• Just make sure all locks acquired in the
same order!
- Total ordering
- Partial ordering

Removing Circular Wait

func(mutex_t *m1, mutex_t *m2)

How to guarantee the ordering
in func? Think about this case:
In Thread A: func(L1, L2)
InThread B: func(L2, L1)

11/18/24 Mengwei Xu @ BUPT 70

• Just make sure all locks acquired in the
same order!
- Total ordering
- Partial ordering

• Enforce lock ordering by lock address

Removing Circular Wait

func(mutex_t *m1, mutex_t *m2)

How to guarantee the ordering
in func? Think about this case:
In Thread A: func(L1, L2)
InThread B: func(L2, L1)

11/18/24 Mengwei Xu @ BUPT 71

1. No circular wait
- Cons: needs careful design and programming from developers.

2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 72

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 73

• Just use another lock to lock the locks

Preventing Hold and Wait

pthread_mutex_lock(prevention); // begin acquisition
2 pthread_mutex_lock(L1);
3 pthread_mutex_lock(L2);
4 ...
5 pthread_mutex_unlock(prevention); // end

11/18/24 Mengwei Xu @ BUPT 74

1. No circular wait
2. No hold-and-wait

- Cons: must know which locks will be used beforehand; concurrency
decreased.

3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 75

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 76

• Design lock-free (or wait-free) data structures and algorithms using
powerful hardware instructions

Preventing Mutual Exclusion

int CompareAndSwap(int *address, int expected,
int new) {
 if (*address == expected) {
 *address = new;
 return 1; // success
 }
 return 0; // failure
}

11/18/24 Mengwei Xu @ BUPT 77

• Using CompareAndSwap to implement “increment a value by n”.

Preventing Mutual Exclusion

void AtomicIncrement(int *value, int n) {
do {
int old = *value;

} while (CompareAndSwap(value, old, old + n)==0);
}

11/18/24 Mengwei Xu @ BUPT 78

• Using CompareAndSwap to implement “insert an element to a list
head”.

Preventing Mutual Exclusion

// without deadlock prevention
void insert(int value) {
node_t *n = malloc(sizeof(node_t));
assert(n != NULL);
n->value = value;
n->next = head;
head = n;

}

11/18/24 Mengwei Xu @ BUPT 79

• Using CompareAndSwap to implement “insert an element to a list
head”.

Preventing Mutual Exclusion

// with deadlock prevention
void insert(int value) {
node_t *n = malloc(sizeof(node_t));
assert(n != NULL);
n->value = value;
do {
n->next = head;

} while (CompareAndSwap(&head, n->next, n) == 0);
}

11/18/24 Mengwei Xu @ BUPT 80

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion

- Cons: too complicated; hardware support needed (possibly performance
degradation).

4. Smart scheduling
- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 81

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm

Preventing Deadlocks

11/18/24 Mengwei Xu @ BUPT 82

• System Model
- A set of Threads T1, T2, . . ., Tn
- Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices

- Each resource type Ri has Wi instances
- Each thread utilizes a resource as follows:

qRequest() / Use() / Release()

• Resource-Allocation Graph:
- V is partitioned into two types:

qT = {T1, T2, …, Tn}, the set threads in the system.
qR = {R1, R2, …, Rm}, the set of resource types in system

- request edge – directed edge T1 ® Rj
- assignment edge – directed edge Rj ® Ti

Resource-Allocation Graph

Symbols

R1
R2

T1 T2

11/18/24 Mengwei Xu @ BUPT 83

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

T1 T2 T3

R1 R2

R3
R4

T1

T2

T3

R2

R1

T4

11/18/24 Mengwei Xu @ BUPT 84

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

11/18/24 Mengwei Xu @ BUPT 85

• Only one of each type of resource Þ look for loops
• More General Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

 [FreeResources]: Current free resources each type
[RequestX]: Current requests from thread X
 [AllocX]: Current resources held by thread X

- See if tasks can eventually terminate on their own
 [Avail] = [FreeResources]
 Add all nodes to UNFINISHED
 do {

 done = true
 Foreach node in UNFINISHED {
 if ([Requestnode] <= [Avail]) { remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode] done = false
 }
 }
 } until(done)
- Nodes left in UNFINISHED Þ deadlocked

Deadlock Detection Algorithm

T1

T2

T3

R2

R1

T4

11/18/24 Mengwei Xu @ BUPT 86

• Terminate thread, force it to give up resources
- In Bridge example, Godzilla picks up a car, hurls it into the river. Deadlock solved!
- But, not always possible – killing a thread holding a mutex leaves world inconsistent

• Preempt resources without killing off thread
- Take away resources from thread temporarily
- Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
- Hit the rewind button, pretend last few minutes never happened
- For bridge example, make one car roll backwards (may require others behind him)
- Common technique in databases (transactions)
- Of course, if you restart in exactly the same way, may reenter deadlock once again

• Many operating systems use other options

What to do when detect deadlock?

11/18/24 Mengwei Xu @ BUPT 87

• Applications usually don’t know exactly when/what they’re going to
request
• Resources are taken/released over time

Resource Requests over Time

T2 T3 T4

R1 R2

R3

T1

11/18/24 Mengwei Xu @ BUPT 88

• What if you don’t know the order/amount of requests ahead of time?
• Must assume some worst-case “max” resource needed by each process
• Toward right idea:

- State maximum resource needs in advance
- Allow particular thread to proceed if:

 (available resources - #requested) ³
max remaining that might be needed by any thread

- Invariant: At all times, every request would succeed
q Really conservative! Let’s do something better.

Bankers Algorithm (银行家算法)

11/18/24 Mengwei Xu @ BUPT 89

• Invariant: At all times, there exists some order of requests that would
succeed.
• Key ideas

- A thread states its maximum resource requirements, but acquires and releases
resources incrementally as the thread executes.

- The runtime system delays granting some requests to ensure that the system
never deadlocks.

Bankers Algorithm (银行家算法)

11/18/24 Mengwei Xu @ BUPT 90

• Safe state: for any possible sequence of
resource requests, there is at least one
safe sequence of processing the requests
that eventually succeeds in granting all
pending and future requests.
• Unsafe state: there is at least one

sequence of future resource requests
that leads to deadlock no matter what
processing order is tried.
• Deadlocked state: the system has at

least one deadlock.

Safe State and Unsafe State

11/18/24 Mengwei Xu @ BUPT 91

• Safe state: for any possible sequence of
resource requests, there is at least one
safe sequence of processing the requests
that eventually succeeds in granting all
pending and future requests.
- A system in a safe state controls its own

destiny: for any workload, it can avoid
deadlock by delaying the processing of
some requests.

Safe State and Unsafe State

11/18/24 Mengwei Xu @ BUPT 92

• Unsafe state: there is at least one
sequence of future resource requests
that leads to deadlock no matter what
processing order is tried.
- An unsafe state does not always lead to

deadlock
- However, as long as the system remains in

an unsafe state, a bad workload or unlucky
scheduling of requests can force it to
deadlock.

Safe State and Unsafe State

11/18/24 Mengwei Xu @ BUPT 93

• Invariant: At all times, there exists some order of requests that would
succeed.
• The banker’s algorithm delays any request that takes it from a safe to an

unsafe state.

Bankers Algorithm (银行家算法)

11/18/24 Mengwei Xu @ BUPT 94

• Delay a request that takes us into unsafe state.
• How to implement this?

- Allocate resources dynamically
q Evaluate each request and grant if some ordering of threads is still deadlock free afterward

- Use deadlock detection algorithm presented earlier :
q BUT: Assume each process needs ”max” resources to finish

Bankers Algorithm (银行家算法)

[Avail] = [FreeResources]
 Add all nodes to UNFINISHED
 do {
 done = true
 Foreach node in UNFINISHED {
 if ([Requestnode] <= [Avail]) {
 remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

[Avail] = [FreeResources]
 Add all nodes to UNFINISHED
 do {
 done = true
 Foreach node in UNFINISHED {
 if ([Maxnode]-[Allocnode] <= [Avail]) {
 remove node from UNFINISHED
 [Avail] = [Avail] + [Allocnode]
 done = false
 }
 }
 } until(done)

11/18/24 Mengwei Xu @ BUPT 95

• Delay a request that takes us into unsafe state.
• How to implement this?

- Allocate resources dynamically
q Evaluate each request and grant if some ordering of threads is still deadlock free afterward

- Use deadlock detection algorithm presented earlier :
q BUT: Assume each process needs ”max” resources to finish

Bankers Algorithm (银行家算法)

Each process might
need“max” resources
in order to finish

11/18/24 Mengwei Xu @ BUPT 96

• Delay a request that takes us into unsafe state.
• How to implement this?

- Allocate resources dynamically
q Evaluate each request and grant if some ordering of threads is still deadlock free afterward

- Use deadlock detection algorithm presented earlier :
q BUT: Assume each process needs ”max” resources to finish

• Keeps system in a “SAFE” state, i.e. there exists a sequence {T1, T2, … Tn}
with T1 requesting all remaining resources, finishing, then T2 requesting all
remaining resources, etc..

• vs. “Require all before star ting”, the Banker’s algorithm allows the
sum of maximum resource needs of all current threads to be greater
than total resources

Bankers Algorithm (银行家算法)

11/18/24 Mengwei Xu @ BUPT 97

• EXAMPLE: Page allocation with the Banker’s Algorithm.
- Suppose we have a system with 8 pages of memory and three processes: A, B,

and C, which need 4, 5, and 5 pages to complete, respectively.
• They take turns requesting one page each, and the system grants

requests in order

Bankers Algorithm (银行家算法)

11/18/24 Mengwei Xu @ BUPT 98

• EXAMPLE: Page allocation with the Banker’s Algorithm.
- Suppose we have a system with 8 pages of memory and three processes: A, B,

and C, which need 4, 5, and 5 pages to complete, respectively.
• They take turns requesting one page each, and the system grants

requests in order

Bankers Algorithm (银行家算法)

Oops! Deadlock!

11/18/24 Mengwei Xu @ BUPT 99

• EXAMPLE: Page allocation with the Banker’s Algorithm.
- Suppose we have a system with 8 pages of memory and three processes: A, B,

and C, which need 4, 5, and 5 pages to complete, respectively.
• What if we use banker’s algorithm?

Bankers Algorithm (银行家算法)

Tasks successfully finished

11/18/24 Mengwei Xu @ BUPT 100

• Banker’s algorithm with dining philosophers
- “Safe” (won’t cause deadlock) if when try to grab chopstick either :

qNot last chopstick
qIs last chopstick but someone will have

two afterwards
- What if k-handed philosopher? Don’t allow if:

qIt’s the last one, no one would have k
qIt’s 2nd to last, and no one would have k-1
qIt’s 3rd to last, and no one would have k-2
q…

Banker’s Algorithm Example

11/18/24 Mengwei Xu @ BUPT 101

1. No circular wait
2. No hold-and-wait
3. No mutual exclusion
4. Smart scheduling

- banking algorithm
- Cons: must know the entire set of tasks and their resource demands

beforehand; concurrency decreased.
- Only used in limited scenarios such as embedded system.

Preventing Deadlocks

11/19/24 Mengwei Xu @ BUPT 102

• Infinite resources
- Include enough resources so that no one ever runs out of resources. Doesn’t have to

be infinite, just large
- Give illusion of infinite resources (e.g. virtual memory)

• No Sharing of resources (totally independent threads)
- Often true (most things don’t depend on each other)
- Not very realistic in general (can’t guarantee)

Techniques for Preventing Deadlock

11/18/24 Mengwei Xu @ BUPT 103

• Deadlock Prevention is HARD
- How many resources will each thread need?
- How many total resources are there?

• Also Slow/Impractical
- Matrix of resources/requirements could be big and dynamic
- Re-evaluate on every request (even for small/non-contended)
- Banker’s algorithm assumes everyone asks for max

• REALITY
- Most OSes don’t bother
- Programmers job to write deadlock-free programs (e.g. by ordering all resource

requests).

Deadlock Prevention – The Reality

11/18/24 Mengwei Xu @ BUPT 104

• Modify our RWLock implementation to use only one condition
variable

• Implement Banker’s Algorithm
- Input-1: task number N, resource type number M;
- Input-2: resource amount: for each type: Ri where i=1-M
- Input-3: MAX resource for each task <Ti,j> where i=1-N and j=1-M;
- Input-4: Sequence of resource request <Ri,j> where i=1-N and j=1-M

q You can define your own way to generate this sequence

- Test your algorithm with a large number of random sequences of
resource request. Make sure deadlock never happens!

Homework

